// P1: MR MR Algoreisms. // P2: MR naught. // P1: OSAR. CM remains. // P2: LIB. MR MR Algoreisms.
Algorithm MR (My Remainder Algorithm). Given two integers n and m where m is not zero, find the remainder when |n| (the absolute value of n) is divided by |m|.
MR0. [Assert Inputs]: Assert n and m are integers and m is not zero. If the assertion is false, raise an error and do not continue; the algorithm must terminate. ∎
MR1. [Remove Sign]: Set n ← |n|, m ← |m|. (We will have n ≥ 0 and m > 0.)
MR2. [Reduce]: Set n ← n – m.
MR3. [Positive?]: If n > 0, go back to step MR2.
MR4. [Remainder?]: (We will have n ≤ 0.) If n equals zero, there is no remainder (i.e. the answer is zero); otherwise, n + m is the answer. Return the answer; the algorithm terminates. ∎
↓ (0. Assert Inputs) → error | ok ______________ ↓ ↓ yes | no no [1. Remove Sign] → [2. Reduce] → (3. Positive?) → (4. Remainder?) → ↓ yes
See also: Algorithms
Implementations, Dopplegangers, and Traps — Oh my!
// Nearly identical implementations // that use the same sort of for loop function MRF1(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); for (n = SUB(n, m); POS(n); n = SUB(n, m)); return ZER(n) ? 0 : ADD(n, m); } function MRF2(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); for (n = SUB(n, m); POS(n); n = SUB(n, m)) { // do nothing } return ZER(n) ? 0 : ADD(n, m); } // Implementations that // use different while loops function MRW1(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); n = SUB(n, m); while (POS(n)) { n = SUB(n, m); } return ZER(n) ? 0 : ADD(n, m); } function MRW2(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); while (true) { n = SUB(n, m); if (!POS(n)) { return ZER(n) ? 0 : ADD(n, m); } } } // Dangerous functions (traps!) that // might return the correct answer, // might not return the correct answer, or // might not return at all! function MRDT1(n, m) { n = SUB(n, m); if (POS(n)) { return MRDT1(n, m); } return ZER(n) ? 0 : ADD(n, m); } function MRDT2(n, m) { while (true) { n = SUB(n, m); if (!POS(n)) { return ZER(n) ? 0 : ADD(n, m); } } } // Implementations that // use dangerous functions responsibly. function MRR1(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); return MRDT1(n, m); } function MRR2(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); return MRDT2(n, m); } // Dopplegangers that answer correctly // but implement a deviant algorithm function MRD1(n, m) { while (true) { ASSERT(n, m); n = ABS(n); m = ABS(m); n = SUB(n, m); if (!POS(n)) { return ZER(n) ? 0 : ADD(n, m); } } } function MRD2(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); n = SUB(n, m); if (!POS(n)) { return ZER(n) ? 0 : ADD(n, m); } return MRD2(n, m); } function MRD3(n, m) { ASSERT(n, m); n = ABS(n); m = ABS(m); n = SUB(n, m); if (POS(n)) { return MRD3(n, m); } return ZER(n) ? 0 : ADD(n, m); }
Components
// An output utility function OUT(s) { console.log(s); } // Components that may be used to implement MR Algorithm function ASSERT(n, m) { OUT("Assert Inputs"); n = parseFloat(n); m = parseFloat(m); if (n === parseInt(n) && m === parseInt(m) && m !== 0) { return; } throw Error("Invalid Arguments!"); } function ABS(n) { OUT("Remove Sign:" + n.toString()); return n < 0 ? -n : n; } function POS(n) { OUT("Positive?:" + n.toString()); return n > 0; } function ZER(n) { OUT("Remainder?:" + n.toString()); return n === 0; } function ADD(n, m) { OUT("Add:" + (n + m).toString()); return n + m; } function SUB(n, m) { OUT("Reduce:" + (n - m).toString()); return n - m; }